Tuesday, February 4, 2014
Storage Battery Solutions for Energy Harvesting Applications
Ambient light, thermal gradients, vibration/motion, or electromagnetic radiation can be harvested to power electronic devices. At the same time, all energy-harvesting-based systems need energy storage for times when the energy cannot be harvested (e.g., at night for solar-powered systems). Rechargeable batteries ‒ known as “secondary” cells to differentiate them from “primary” or single-use cells ‒ are usually specified for this task. This article will examine the various secondary cell technologies available to energy harvesting system designers looking for a cost-effective and powerful battery solution.
Primary and secondary batteries contain the same basic structure of a cathode, an anode, an electrolyte for moving charge between the terminals, and a means to separate them. Secondary cells are distinguished by the type of rechargeable chemistry employed, such as nickel-cadmium or lithium-polymer, or solid-state thin film. [Link]
Labels:
applications,
battery,
energy,
for,
harvesting,
solutions,
storage
Friday, January 10, 2014
Solar Powered SLA Battery Maintenance
This circuit was designed to ‘baby-sit’ SLA (sealed lead-acid or ‘gel’) batteries using freely available solar power. SLA batteries suffer from relatively high internal energy loss which is not normally a problem until you go on holidays and disconnect them from their trickle current charger. In some cases, the absence of trickle charging current may cause SLA batteries to go completely flat within a few weeks. The circuit shown here is intended to prevent this from happening.
Two 3-volt solar panels, each shunted by a diode to bypass them when no electricity is generated, power a MAX762 step-up voltage converter IC. The ‘762 is the 15-volt-out version of the perhaps more familiar MAX761 (12 V out) and is used here to boost 6 V to 15 V. C1 and C2 are decoupling capacitors that suppress high and low frequency spurious components produced by the switch-mode regulator IC. Using Schottky diode D3, energy is stored in inductor L1 in the form of a magnetic field.
When pin 7 of IC1 is open-circuited by the internal switching signal, the stored energy is diverted to the 15-volt output of the circuit. The V+ (sense) input of the MAX762, pin 8, is used to maintain the output voltage at 15 V. C4 and C5 serve to keep the ripple on the output voltage as small as possible. R1, LED D4 and pushbutton S1 allow you to check the presence of the 15-V output voltage.
D5 and D6 reduce the 15-volts to about 13.6 V which is a frequently quoted nominal standby trickle charging voltage for SLA batteries. This corresponds well with the IC’s maximum, internally limited, output current of about 120 mA. The value of inductor L1 is not critical — 22 µH or 47 µH will also work fine. The coil has to be rated at 1 A though in view of the peak current through it.
The switching frequency is about 300 kHz. A suggestion for a practical coil is type M from the WEPD series supplied by Würth (www.we-online.com). Remarkably, Würth supply one-off inductors to individual customers. At the time of writing, it was possible, under certain conditions, to obtain samples, or order small quantities, of the MAX762 IC through the Maxim website at www.maxim-ic.com.
More...
Two 3-volt solar panels, each shunted by a diode to bypass them when no electricity is generated, power a MAX762 step-up voltage converter IC. The ‘762 is the 15-volt-out version of the perhaps more familiar MAX761 (12 V out) and is used here to boost 6 V to 15 V. C1 and C2 are decoupling capacitors that suppress high and low frequency spurious components produced by the switch-mode regulator IC. Using Schottky diode D3, energy is stored in inductor L1 in the form of a magnetic field.
Solar Powered SLA Battery Maintenance Circuit Diagram |
When pin 7 of IC1 is open-circuited by the internal switching signal, the stored energy is diverted to the 15-volt output of the circuit. The V+ (sense) input of the MAX762, pin 8, is used to maintain the output voltage at 15 V. C4 and C5 serve to keep the ripple on the output voltage as small as possible. R1, LED D4 and pushbutton S1 allow you to check the presence of the 15-V output voltage.
D5 and D6 reduce the 15-volts to about 13.6 V which is a frequently quoted nominal standby trickle charging voltage for SLA batteries. This corresponds well with the IC’s maximum, internally limited, output current of about 120 mA. The value of inductor L1 is not critical — 22 µH or 47 µH will also work fine. The coil has to be rated at 1 A though in view of the peak current through it.
The switching frequency is about 300 kHz. A suggestion for a practical coil is type M from the WEPD series supplied by Würth (www.we-online.com). Remarkably, Würth supply one-off inductors to individual customers. At the time of writing, it was possible, under certain conditions, to obtain samples, or order small quantities, of the MAX762 IC through the Maxim website at www.maxim-ic.com.
- Source
- DIY Electronics Projects
Inverter Overload Protector With Delayed Auto Rest
An overload condition in an inverter may permanently damage the power transistor array or burn off the transformer. Some of the domestic inverters sold in the market do not feature an overload shutdown facility, while those incorporating this feature come with a price tag.the circuit presented here is an overload detector which shuts down the inverter in an overload condition.
Inverter Overload Protector With Delayed Auto Rest Circuit diagram:
It hasthe following desirable features:
- It shuts down the inverter and also provides audio-visual indication of the overload condition.
- after shutdown, it automatically restarts the inverter with a delay of 6 seconds. thus, it saves the user from the inconvenience caused due to manually resetting the system or running around in darkness to reset the system at night.
- It permanently shuts down the inverter and continues to give audio warning, in case there are more than three successive overloads. Under this condition, the system has to be manually reset.(Successive overload condition indicates that the inverter output is short-circuited or a heavy current is being drawn by the connected load.)
Inverter Overload Protector With Delayed Auto Rest
The circuit uses an ammeter (0-30a) as a transducer to detect overload condition. Such an am-meter is generally present in almost all inverters. this ammeter is connected between the negative supply of the battery and the inverter, as shown in Fig. 2. the voltage developed across this ammeter, due to the flow of current, is very small. It is amplified by IC2, which is wired as a differential amplifier having a gain of 100. IC3 (NE555) is connected as a Schmitt ‘trigger’, whose output goes low when the voltage at its pin 2 exceeds 3.3V. IC4 (again an NE555 timer) is configured as a monostable multivibrator with a pulsewidth of 6 seconds. IC5 (CD4017) is a CMOS counter which counts the three overload conditions, after which the sys-tem has to be reset manually, by pressing push-to-on switch S1. the circuit can be powered from the inverter battery. In standby condition, it consumes 8-10 ma of current and around 70 mA with relay (RL1), buzzer (PZ1), and LED1 energised.
Please note the following points carefully:
- Points A and B at the input of IC2 should be connected to the corresponding points (A and B respectively) across the ammeter.
- Points C and D on the relay terminals have to be connected in series with the already existing ‘on’/‘off’ switch leads of inverter as shown in Fig. 1. this means that one of the two leads terminated on the existing switch has to be cut and the cut ends have to be connected to the pole and N/O contacts respectively of relay RL1.
- The ammeter should be connected in series with the negative terminal of the battery and inverter, as shown in Fig. 2.Move the wiper of preset VR1 to the extreme position which is grounded. Switch ‘on’ the inverter. For a 300W inverter, connect about 250-260W of load. Now adjust VR1 slowly, until the inverter just trips or shuts down. repeat the step if necessary. Use good-quality preset with dust cover (e.g. multiturn trimpot) for reliable operation.the circuit can be easily and success-fully installed with minimum modifications to the existing inverter. all the components used are cheap and readily avail-able. the whole circuit can be assembled on a general-purpose PCB. The cost of the whole circuit including relay, buzzer, and PCB does not exceed Rs 100.
Source: http://www.ecircuitslab.com/2011/11/inverter-overload-protector-with.html
Build a 200Ma 12v ni cad Battery Charger Circuit Diagram
This 200Ma-12v ni-cad Battery Charger Circuit Diagram charges the battery at 75 mA battery can be left in the charger indefinitely, until the battery is charged, then it reduces the To set the shut-off point, connect a 270-ohm, current to a trickle rate
It will completely 2-watt resistor across the charge terminals and recharge a dead battery in four hours and the adjust the pot for 15 volts across the resistor.
200Ma-12v ni-cad Battery Charger Circuit Diagram
Thursday, January 9, 2014
Simple Frequency Voltage Converter Circuit Diagram
This is the simple frequency voltage converter circuit diagram. Teledyne Semiconductor`s Type TSC9402 is a versatile IC. Not only can it convert voltage into frequency, but also frequency into voltage. It is thus eminently suitable for use in an add-on unit for measuring frequencies with a multimeter.
Only a few additional components are required for this.. Just one calibration point sets the center of the measuring range (or of that part of the range that is used most frequently). The frequency-proportional direct voltage at the output (pin 12—amp out) contains interference pulses at levels up to 0.7 V. If these have an adverse effect on the multimeter, they can be suppressed with the aid of a simple RC network.
The output voltage, U0, is calculated by: tfo=C/rei(Ci + 12 pF) R2fm Because the internal capacitance often has a greater value than the 12 pF taken here, the formula does not yield an absolute value. The circuit has a frequency range of dc to 10 kHz. At 10 kHz, the formula gives a value of 3.4 V. The circuit draws a current of not more than 1 mA.
Frequency Voltage Converter Circuit Diagram
Simple Frequency Voltage Converter Circuit Diagram
Subscribe to:
Posts (Atom)